

Tetrahedron Letters, Vol. 38, No. 42, pp. 7415-7416, 1997 © 1997 Published by Elsevier Science Ltd All rights reserved. Printed in Great Britain 0040-4039/97 \$17.00 + 0.00

PII: S0040-4039(97)01744-9

Facile synthesis of 2Z-2-Chloromethyl aryl-2-enoates :#

Subhash P. Chavan', Krishna S. Ethiraj and Subhash K. Kamat

Division of Organic Chemistry : Technology, National Chemical Laboratory, Pune - 411008, INDIA.

Abstract:: Triethylamine - Methanesulfonyl chloride has been employed as reagent for stereoselective synthesis of 2Z-2-(Chloromethyl)aryl-2-enoates from Baylis Hillman products in good yields at room temperature. © 1997 Published by Elsevier Science Ltd.

2Z-2-(Halomethyl)alk-2-enoates¹ are an important class of compounds for the stereoselective synthesis of natural products such as α -methylene- γ -butyrolactones², necic acids^{3a} and α -alkylidene- β -lactams⁴. These compounds have been synthesized from 3-hydroxy-2-methylene alkanoates using 1) (HCA-PPh₃) complex^{3b} 2) HBr - H₂SO₄⁴ 3) NCS / NBS - Me₂S⁵ 4) PBr₃⁶ 5) Oxalyl chloride/ DMF/CHCl₃⁷ 6)CuBr₂/ silica gel⁸ and more recently by the reaction of 7) MgBr₂ / THF^{9a} and 8) AlCl₃ / CH₂Cl₂^{9b} with the acetate derived from the corresponding alcohol.

In connection with our programme on Mg / MeOH mediated transformations we needed to mesylate compound 1. However treatment of compound 1a with NEt₃ / MsCl furnished not 2 but the allylic rearranged chloro product 3a in good yield. In order to see the generality of the reaction a variety of alcohols 1 were subjected to the above conditions. The results are summarised in the table.

From the table, it is evident that compound 1 gave good yields of rearranged chloro product on treatment with NEt₃ / MsCl except for entries 5 & 6 where moderate yields were obtained. However, in the case of substituted nitro compounds (entries 7 and 8) derived from reaction of p-nitrobenzaldehyde with ethyl vinyl ketone and with phenyl vinyl sulfone respectively, high yields of rearranged chloro products were obtained.

Procedure : To a solution of alcohol (1) in dry CH_2Cl_2 (20 ml) was added triethylamine (2-5 eq) at room temperature. After 0.5 h mesyl chloride (2-5 eq) was added to the reaction mixture at 0°C. The reaction was stirred at room temperature for 1-2 days and monitored by TLC. On completion of the reaction, solvent was removed under reduced pressure and the residue purified by chromatography (SiO₂) to furnish the chloride 3.

Entry	Subtrate		Product		NEt _{3 /} MsCl	% Yield
	EWG	R	EWG	R		
1.	-COOEt	a) H	-COOEt	a) H	5eq	81
		b) <i>p</i> - CN		b) <i>p</i> - CN	5eq	77
		c) <i>o</i> - Cl		c) <i>o</i> - Cl	2eq	70
		d) <i>p</i> - Cl		d) p - Cl	2eq	78
		e) <i>o</i> - NO ₂		e) <i>o</i> - NO ₂	2eq	41
		f) $p - NO_2$		f) <i>p</i> - NO ₂	2 eq	50
2.	-COEt	<i>p</i> - NO ₂	-COEt	<i>p</i> - NO ₂	2eq	84
3.	-SO ₂ Ph	$p - NO_2$	-COEt	<i>p</i> - NO ₂	2eq	90

Analogous to observation made earlier by Hoffmann⁴, the exclusive formation of Z- allyl chloride can be explained by the attack of Cl⁻ ion in a $S_N 2'$ fashion on the mesylate 2. The transition state (i) is the preferred one, as it involves less steric interaction between aryl and ester, giving rise to thermodynamically stable Z olefin.

In conclusion, a mild and efficient, one step synthesis of 2Z-2-(chloromethyl)aryl-2-enoates is described by treating Baylis-Hillman products 1 with NEt₃ / MsCl in good yields at room temperature.

ACKNOWLEDGEMENTS : One of us (K.S. Ethiraj) thanks CSIR for fellowship. We also thank Dr.T.Ravindranathan, Head, OCT, National Chemical Laboratory, Pune-8, for encouragement. Funding from CSIR under Young Scientist Award Scheme is gratefully acknowledged.

REFERENCES AND NOTES:

Dedicated to Prof M.S. Wadia on the occasion of his 60th birthday.

Presented at National Symposium in Frontier Areas in Organic Chemistry, 14-15th Feb 1997, PUNE, INDIA.

- 1. Basavaiah, D.; Rao, P. D.; Suguna Hyma. R.; Tetrahedron, 1996, 52, 8001-8062 and references therein.
- 2. Hoffmann, H. M.R.; Rabe, J.; Angew. Chem. Int. Ed. Engl., 1985, 24, 94.
- Ameer, F.; Drewes, S.E.; Hoole, R.; Kaye, P.T.; Pitchford, A.T.; J. Chem.Soc.Perkin.Trans.I, 1985, 2713. (b) Ameer, F; Drewes, S.E.; Houston-McMillan, M.S; Kaye, P.T.; J.Chem.Soc.Perkin.Transl, 1985, 1143.
- 4. Buchholz, R.; Hoffmann, H.M.R.; Helv. Chim. Acta, 1991, 74, 1213.
- 5. Hoffmann, H.M.R.; Rabe, J.; J.Org.Chem, 1985, 50, 3849.
- 6. Semmelhack, M.F.; Wu, E.S.C; J.Am. Chem. Soc.; 1976, 98, 3384-3386.
- 7. McFadden, H.G.; Harris, R.L.N.; Jenkins, C.L.D.; Aust.J.Chem., 1989, 42, 301-314.
- 8. Gruiec, A.; Foucaud, A.; New. J. Chem.; 1991, 15, 943.
- Basaviah, D.; Bhavani, A.K.D.; Pandiaraju, S.; Sarma, P.K.S.; Synlett, 1995, 3, 243. (b) Basaviah, D.; Pandiaraju, S.; Padmaja, K.; Synlett, 1996, 4, 393-395.

(Received in UK 25 March 1997; revised 20 August 1997; accepted 22 August 1997)